Узреть невидимое. Большая энциклопедия нефти и газа

Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения.


Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения. Мы подготовили перечень наиболее часто встречающихся вопросов об ультрафиолете и ответы на них.

Что такое ультрафиолетовое излучение?

Спектр электромагнитного излучения достаточно широк, но глаз человека чувствителен только к определенной области, называемой видимым спектром, которая охватывает диапазон длин волн от 400 до 700 нм. Излучения, которые находятся за пределами видимого диапазона, являются потенциально опасными и включают в себя инфракрасную (с волн длиной более 700 нм) и ультрафиолетовую область (менее 400 нм). Излучения, имеющие более короткую длину волны, чем ультрафиолетовое, называются рентгеновским и γ-излучениями. Если длина волны больше, чем аналогичный показатель у инфракрасного излучения, то это радиоволны. Таким образом, ультрафиолетовое (УФ) излучение - это невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 100-380 нм.

Какие диапазоны имеет ультрафиолетовое излучение?

Как видимый свет можно разделить на составляющие разных цветов, которые мы наблюдаем при возникновении радуги, так и УФ-диапазон, в свою очередь, имеет три составляющие: УФ-A, УФ-B и УФ-C, причем последняя является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200-280 нм, однако оно в основном поглощается верхними слоями атмосферы. УФ-B-излучение имеет длину волн от 280 до 315 нм и считается излучением средней энергии, представляющим опасность для органа зрения человека. УФ-A-излучение - это наиболее длинноволновая составляющая ультрафиолета с диапазоном длин волн 315-380 нм, которая имеет максимальную интенсивность к моменту достижении поверхности Земли. УФ-A-излучение глубже всего проникает в биологические ткани, хотя его повреждающее действие меньше, чем у УФ-B-лучей.

Что означает само название «ультрафиолет»?

Это слово означает «сверх (выше) фиолета» и происходит от латинского слова ultra («сверх») и названия самого короткого излучения видимого диапазона - фиолетового. Хотя УФ-излучение никак не ощущается человеческим глазом, некоторые животные - птицы, рептилии, а также насекомые, например пчелы, - могут видеть в таком свете. Многие птицы имеют раскраску оперенья, которая невидима в условиях видимого освещения, но хорошо различима в ультрафиолетовом. Некоторых животных также легче заметить в лучах ультрафиолетового диапазона. Многие фрукты, цветы и семена воспринимаются глазом более отчетливо при таком освещении.

Откуда возникает ультрафиолетовое излучение?

На открытом воздухе главным источником УФ-излучения является солнце. Как уже было сказано, частично оно поглощается верхними слоями атмосферы. Поскольку человек редко смотрит прямо на солнце, то основной вред для органа зрения возникает в результате воздействия рассеянного и отраженного ультрафиолета. В помещении УФ-излучение возникает при использовании стерилизаторов для медицинских и косметических инструментов, в соляриях для формирования загара, в процессе применения различных медицинских диагностических и терапевтических приборов, а также при отверждении композиций пломб в стоматологии.


В соляриях УФ-излучение возникает для формирования загара

В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи, поэтому применение защитных средств предписано как обязательное для сварщиков. Флюоресцентные лампы, широко используемые для освещения на работе и дома, также являются источниками УФ-излучения, но уровень последнего очень незначителен и не представляет серьезной опасности. Галогеновые лампы, которые также применяются для освещения, дают свет с УФ-составляющей. Если человек находится близко от галогеновой лампы без защитного колпака или экрана, то уровень УФ-излучения может вызвать у него серьезные проблемы с глазами.


В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи

От чего зависит интенсивность воздействия ультрафиолета?

Его интенсивность зависит от многих факторов. Во-первых, высота солнца над горизонтом меняется в зависимости от времени года и суток. Летом в дневные часы интенсивность УФ-B-излучения максимальна. Существует простое правило: когда ваша тень короче, чем ваш рост, то вы рискуете получить на 50 % больше такого излучения.

Во-вторых, интенсивность зависит от географической широты: в экваториальных районах (широта близка к 0°) интенсивность УФ-излучения наиболее высокая - в 2-3 раза выше, чем на севере Европы.
В-третьих, интенсивность возрастает с увеличением высоты над уровнем моря, так как соответствующим образом уменьшается слой атмосферы, способный поглощать ультрафиолет, поэтому большее количество наиболее высокоэнергетического коротковолнового УФ-излучения достигает поверхности Земли.
В-четвертых, на интенсивность излучения влияет рассеивающая способность атмосферы: небо представляется нам синим из-за рассеивания коротковолнового голубого излучения видимого диапазона, а еще более коротковолновый ультрафиолет рассеивается гораздо сильнее.
В-пятых, интенсивность излучения зависит от наличия облаков и тумана. Когда небо безоблачно, УФ-излучение достигает максимума; плотные облака снижают его уровень. Однако прозрачные и редкие облака мало влияют на уровень УФ-излучения, водяной пар тумана может привести к увеличению рассеяния ультрафиолета. Малооблачную и туманную погоду человек может ощущать как более холодную, однако интенсивность УФ-излучения остается практически такой же, как и в ясный день.


Когда небо безоблачно, УФ-излучение достигает максимума

В-шестых, количество отраженного ультрафиолета варьирует в зависимости от вида отражающей поверхности. Так, для снега отражение составляет 90 % падающего УФ-излучения, для воды, почвы и травы - примерно 10 %, а для песка - от 10 до 25 %. Об этом необходимо помнить, находясь на пляже.

Каково воздействие ультрафиолета на организм человека?

Длительное и интенсивное воздействие УФ-излучения может быть вредным для живых организмов - животных, растений и человека. Заметим, что некоторые насекомые видят в УФ-A-диапазоне, а они являются неотъемлемой частью экологической системы и каким-либо образом приносят пользу человеку. Наиболее известный результат воздействия ультрафиолета на организм человека - это загар, который до сих пор является символом красоты и здорового образа жизни. Однако длительное и интенсивное воздействие УФ-излучения может привести к развитию раковых заболеваний кожи. Необходимо помнить, что облака не блокируют ультрафиолет, поэтому отсутствие яркого солнечного света не означает, что защита от УФ-излучения не нужна. Наиболее вредная составляющая данного излучения поглощается озоновым слоем атмосферы. Факт уменьшения толщины последнего означает, что в будущем защита от ультрафиолета станет еще более актуальной. По оценкам ученых, снижение количества озона в атмосфере Земли всего на 1 % приведет к росту раковых заболеваний кожи на 2-3%.

Какую опасность ультрафиолет представляет для органа зрения?

Существуют серьезные лабораторные и эпидемиологические данные, связывающие длительность воздействия ультрафиолета с заболеваниями глаз: , птеригиумом и др. По сравнению с хрусталиком взрослого хрусталик ребенка существенно более проницаем для солнечной радиации, и 80 % кумулятивных последствий воздействия ультрафиолетовых волн накапливаются в организме человека до достижения им 18-летнего возраста. Максимально подверженным проникновению излучения хрусталик является непосредственно после рождения младенца: он пропускает до 95 % падающего УФ-излучения. С возрастом хрусталик начинает приобретать желтый оттенок и становится не столь прозрачным. К 25 годам менее 25 % падающих ультрафиолетовых лучей достигают сетчатки. При афакии глаз лишен естественной защиты хрусталика, поэтому в такой ситуации важно пользоваться УФ-поглощающими линзами или фильтрами.
Следует учитывать, что целый ряд медицинских препаратов обладают фотосенсибилизирующими свойствами, то есть увеличивают последствия от воздействия ультрафиолета. Оптики и оптометристы должны иметь представление об общем состоянии человека и применяемых им препаратах для того, чтобы дать рекомендации по поводу применения средств защиты.

Какие существуют средства защиты глаз?

Наиболее эффективный способ защиты от ультрафиолета - прикрытие глаз специальными защитными очками, масками, щитками, которые полностью поглощают УФ-излучение. На производстве, где применяются источники УФ-излучения, использование таких средств является обязательным. Во время пребывания на открытом воздухе в яркий солнечный день рекомендуется носить солнцезащитные очки со специальными линзами, которые надежно защищают от УФ-излучения. Такие очки должны иметь широкие заушники или прилегающую форму для предупреждения проникновения излучения сбоку. Бесцветные очковые линзы также могут выполнять эту функцию, если в их состав введены добавки-абсорберы или проведена специальная обработка поверхности. Хорошо прилегающие солнцезащитные очки защищают как от прямого падающего излучения, так и от рассеянного и отраженного от различных поверхностей. Эффективность использования солнцезащитных очков и рекомендации по их применению определены путем указания категории фильтра, светопропусканию которого соответствуют очковые линзы.


Наиболее эффективный способ защиты от ультрафиолета - прикрытие глаз специальными защитными очками, масками, которые полностью поглощают УФ-излучение

Какие стандарты регламентируют светопропускание линз солнцезащитных очков?

В настоящее время в нашей стране и за рубежом разработаны нормативные документы, регламентирующие светопропускание солнцезащитных линз согласно категориям фильтров и правила их применения. В России это ГОСТ Р 51831-2001 «Очки солнцезащитные. Общие технические требования», а в Европе - EN 1836: 2005 «Personal eye protection - Sunglasses for general use and filters for direct observation of the sun».

Каждый вид солнцезащитных линз разработан для определенных условий освещенности и может быть отнесен к одной из категорий фильтров. Всего их пять, и они нумеруются от 0 до 4. Согласно ГОСТ Р 51831-2001, светопропускание T,  %, солнцезащитных линз в видимой области спектра может составлять от 80 до 3-8 % в зависимости от категории фильтра. Для УФ-B- диапазона (280-315 нм) этот показатель не должен быть больше 0,1T (в зависимости от категории фильтра он может быть от 8,0 до 0,3-0,8 %), а для УФ-A-излучения (315-380 нм) - не больше 0,5T (в зависимости от категории фильтра - от 40,0 до 1,5-4,0 %). В то же время производители качественных линз и очков устанавливают более жесткие требования и гарантируют потребителю полное отрезание ультрафиолета до длины волны 380 нм или даже до 400 нм, о чем свидетельствует специальная маркировка на линзах очков, их упаковке или сопроводительной документации. Следует отметить, что для линз солнцезащитных очков эффективность защиты от ультрафиолета не может однозначно определяться степенью их затемнения или стоимостью очков.

Правда ли, что ультрафиолет более опасен, если человек носит некачественные солнцезащитные очки?

Это действительно так. В естественных условиях, когда человек не носит очки, его глаза автоматически реагируют на избыточную яркость солнечного света изменением размера зрачка. Чем ярче свет, тем меньше зрачок, и при пропорциональном соотношении видимого и ультрафиолетового излучения этот защитный механизм работает весьма эффективно. Если же применяется затемненная линза, то освещение кажется менее ярким и зрачки увеличиваются, позволяя большему количеству света достигать глаз. В том случае, когда линза не обеспечивает надлежащую защиту от ультрафиолета (количество видимого излучения уменьшается больше, чем ультрафиолетового), суммарное количество попадающего в глаза ультрафиолета оказывается более значительным, чем при отсутствии солнцезащитных очков. Именно поэтому окрашенные и светопоглощающие линзы должны содержать УФ-абсорберы, которые снижали бы количество УФ-излучения пропорционально уменьшению излучения видимого спектра. По международным и отечественным стандартам светопропускание солнцезащитных линз в УФ-области регламентируется как пропорционально зависимое от светопропускания в видимой части спектра.

Какой оптический материал для очковых линз обеспечивает защиту от ультрафиолета?

Некоторые материалы для очковых линз обеспечивают поглощение УФ-излучения благодаря своей химической структуре. Оно активизирует фотохромные линзы, которые в соответствующих условиях блокируют его доступ к глазу. Поликарбонат содержит группы, поглощающие излучение в ультрафиолетовой области, поэтому он оберегает глаза от ультрафиолета. CR-39 и другие органические материалы для очковых линз в чистом виде (без добавок) пропускают некоторое количество УФ-излучения, и для надежной защиты глаз в их состав вводят специальные абсорберы. Эти компоненты не только защищают глаза пользователей, обеспечивая отрезание ультрафиолета до 380 нм, но и предупреждают фотоокислительную деструкцию органических линз и их пожелтение. Минеральные очковые линзы из обычного кронового стекла непригодны для надежной защиты от УФ-излучения, если в состав шихты для его производства не введены специальные добавки. Такие линзы можно использовать в качестве солнцезащитных фильтров только после нанесения качественных вакуумных покрытий.

Правда ли, что эффективность защиты от ультрафиолета для фотохромных линз определяется их светопоглощением в активированной стадии?

Некоторые пользователи очков с задают подобный вопрос, так как беспокоятся о том, будут ли они надежно защищены от ультрафиолета в пасмурный день, когда нет яркого солнечного излучения. Следует отметить, что современные фотохромные линзы поглощают от 98 до 100 % УФ-излучения при любых уровнях освещенности, то есть вне зависимости от того, являются ли они в данный момент бесцветными, средне- или темно-окрашенными. Благодаря этой особенности фотохромные линзы подходят для пользователей очков, находящихся на открытом воздухе в различных погодных условиях. В настоящее время растет число людей, которые начинают понимать, какую опасность представляет длительное воздействие УФ-излучения для здоровья глаз, и многие выбирают фотохромные линзы. Последние отличаются высокими защитными свойствами в сочетании с особым преимуществом - автоматическим изменением светопропускания в зависимости от уровня освещенности.

Является ли темная окраска линз гарантией защиты от ультрафиолетового излучения?

Сама по себе интенсивная окраска солнцезащитных линз не дает гарантии защиты от ультрафиолета. Следует отметить, что дешевые органические солнцезащитные линзы, выпущенные в условиях крупносерийного производства, могут иметь достаточно высокий уровень защиты. Как правило, сначала смешивают специальный УФ-абсорбер с сырьем для производства линз и делают бесцветные линзы, а затем осуществляют окрашивание. Добиться обеспечения УФ-защиты для солнцезащитных минеральных линз сложнее, так как их стекло пропускает больше излучения, чем многие виды полимерных материалов. Для гарантированной защиты необходимо введение ряда добавок в состав шихты для выпуска заготовок линз и применение дополнительных оптических покрытий.
Окрашенные рецептурные линзы делают из соответствующих бесцветных линз, которые могут иметь или нет достаточное количество УФ-абсорбера для надежного отрезания соответствующего диапазона излучения. Если нужны линзы со 100 %-й защитой от ультрафиолета, задача контроля и обеспечения такого показателя (до 380-400 нм) возлагается на оптика-консультанта и мастера - сборщика очков. В этом случае введение УФ-абсорберов в поверхностные слои органических очковых линз производится по технологии, аналогичной окрашиванию линз в растворах красителей. Единственное исключение состоит в том, что УФ-защиту не увидеть глазом и для ее проверки нужны специальные приборы - УФ-тестеры. Производители и поставщики оборудования и красителей для окраски органических линз включают в свой ассортимент различные составы для поверхностной обработки, обеспечивающие разные уровни защиты от ультрафиолета и коротковолнового видимого излучения. Провести контроль светопропускания ультрафиолетовой составляющей в условиях стандартной оптической мастерской не представляется возможным.

Следует ли вводить абсорбер ультрафиолетового излучения в бесцветные линзы?

Многие специалисты считают, что введение УФ-абсорбера в бесцветные линзы принесет только пользу, так как защитит глаза пользователей и предупредит ухудшение свойств линз под воздействием УФ-излучения и кислорода воздуха. В некоторых странах, где существует высокий уровень солнечной радиации, например в Австралии, это является обязательным. Как правило, стараются обеспечить отрезание излучения до 400 нм. Таким образом, исключены наиболее опасные и высокоэнергетические составляющие, а оставшегося излучения достаточно для правильного восприятия цвета предметов окружающей действительности. Если границу отрезания сдвинуть в видимую область (до 450 нм), то у линз появится желтый цвет, при увеличении до 500 нм - оранжевый.

Как можно убедиться, что линзы обеспечивают защиту от ультрафиолетового излучения?

На оптическом рынке представлено много различных УФ-тестеров, которые позволяют проверить светопропускание очковых линз в ультрафиолетовом диапазоне. Они показывают, какой уровень пропускания у данной линзы в УФ-диапазоне. Однако следует учитывать и то, что оптическая сила корригирующей линзы может оказать влияние на данные измерения. Более точные данные удается получить при помощи сложных приборов - спектрофотометров, которые не только показывают светопропускание при определенной длине волны, но и учитывают при измерении оптическую силу корригирующей линзы.

Защита от ультрафиолетового излучения является важным аспектом, который нужно учитывать при подборе новых очковых линз. Надеемся, что приведенные в данной статье ответы на вопросы об ультрафиолетовом излучении и способах защиты от него помогут вам подобрать очковые линзы, которые дадут возможность сохранить здоровье ваших глаз на долгие годы.

Ультрафиолет — это часть спектра электромагнитного излучения, которая находится за границами нашего восприятия. Проще говоря — невидимое излучение. Но не совсем. Видимый нами свет ограничен длинами волн от 380 нм до 780 нм (нанометров). Длина волн ультрафиолета или ультрафиолетового излучения лежит в диапазоне от 10 нм до 400 нм. Получается, что все-таки мы можем видеть ультрафиолет — но только его малую часть, находящуюся в небольшом промежутке между 380 и 400 нм.

Все. Сухие факты закончились, начинаются факты интересные. Дело в том, что это еле видимое излучение на самом деле играет огромную роль не только в биосфере (об этом мы обязательно расскажем отдельно), но и в освещении. Проще говоря, ультрафиолет помогает нам видеть.

Ультрафиолет и освещение

Основное применение ультрафиолет нашел в светильниках. Электрические разряды заставляют светиться газ внутри люминесцентной лампы (или компактной люминесцентной лампы) в ультрафиолетовом диапазоне. Для того чтобы получить видимый свет , на стенки лампы наносится специальное покрытие из материала, который будет флуоресцировать — то есть светиться в видимом диапазоне — под воздействием ультрафиолетового излучения. Такой материал называется люминофором, и производители постоянно работают над улучшением его состава, чтобы повысить качество получаемого видимого света. Именно поэтому на сегодняшний день мы имеем неплохой выбор люминесцентных ламп, которые не только выигрывают у обычных ламп накаливания в энергоэффективности, но и производят достаточно приятный для глаза свет практически полного спектра.

Какие еще могут быть применения у ультрафиолета?

Существует целый ряд материалов, способных светиться в ультрафиолете. Эта способность называется флуоресценцией — ей обладают многие органические вещества. Кроме нее существует и так называемая фосфоресценция — ее отличие в том, что вещество испускает свет с более низкой интенсивностью, но продолжает светиться еще некоторое время (часто довольно длительное — до нескольких часов) после прекращения воздействия на него ультрафиолетового излучения. Эти свойства активно используются при изготовлении различных «светящихся в темноте» предметов и украшений.

Глаз наряду с кожей и системой иммунитета - основные критические органы при действии ультрафиолетового излучения (УФ-излучения) на человека. Следует всегда помнить, что для глаза человека ультрафиолетовое излучение - только повреждающий фактор.

Прямые солнечные лучи практически не попадают на роговицу при нахождении Солнца в зените. Но в связи с многократными отражениями существенная доля ультрафиолетового излучения все же достигает глаза (10-30%, в зависимости от внешних условий).

Ультрафиолетовое излучение в зависимости от длины волны лучей подразделяется на три диапазона: УФ-А, УФ-В и УФ-С. Установлено: чем короче длина волны, тем опаснее ультрафиолетовое излучение.

Самый коротковолновый диапазон ультрафиолетового излучения - УФ-С. К счастью, лучи УФ-С диапазона не достигают поверхности Земли, так как полностью поглощаются озоновым слоем атмосферы.

Интенсивность ультрафиолетового излучения УФ-В диапазона (280-315 нм) сравнительно невелика (лучи этого диапазона частично задерживаются атмосферой), однако оно обладает сильным повреждающим действием. В малых дозах ультрафиолетовое излучение УФ-В диапазона вызывает потемнение кожи, называемое загаром; в больших – солнечный ожог, что приводит к увеличению риска рака кожи.

Слишком интенсивное воздействие данных ультрафиолетовых лучей на глаза вызывает фотокератит (солнечный ожог роговицы и конъюнктивы, сопровождающийся сильной болью и воспалением), который может привести к временной потере зрения (сильную степень фотокератита часто называют «снежной слепотой »), а также другие осложнения, связанные с нарушением нормального состояния роговицы и века. Риск фотокератита возрастает в высокогорье, а также на снегу, если не защищать глаза от ультрафиолетового излучения. Отметим, что воздействие ультрафиолетового излучения УФ-В диапазона ограничивается поверхностью глаза, внутрь глаза эти ультрафиолетовые лучи практически не проникают.

Ультрафиолетовое излучение диапазона УФ-А (315-390 нм), находящегося рядом с видимым спектром, само по себе менее опасно, чем излучение УФ-В диапазона. Однако эти ультрафиолетовые лучи, в отличие от УФ-В лучей, проникают глубоко внутрь глаза и оказывают повреждающее действие на такие важные структуры глаза, как хрусталик и сетчатка.

Воздействие ультрафиолетового излучения УФ-А диапазона на глаза в течение длительного времени приводит к увеличению риска ряда опасных заболеваний глаз, включая катаракту и дегенерацию макулы, которая считается основной причиной слепоты в старческом возрасте.

В последние годы специалисты большое внимание уделяют синим лучам видимого спектра (около 400 нм), которые непосредственно примыкают к длинноволновой части УФ-диапазона, полагая, что длительное воздействие этих высокоэнергетичных лучей видимого спектра на глаза также небезопасно, поскольку они глубоко проникают внутрь глаза и воздействуют на сетчатку.

Поэтому так важно защищать глаза от ультрафиолетового излучения. Солнцезащитные очки рекомендуется носить для уменьшения суммарной дозы ультрафиолетового излучения практически всем , кто длительное время проводит на открытом воздухе . Это связано с тем, что любое воздействие ультрафиолетовых лучей на глаза небезопасно, поскольку полученные в течение всей жизни дозы ультрафиолетового облучения накапливаются и увеличивают риск заболеваний глаза. Особенно опасно воздействие ультрафиолетового излучения на афакичный глаз (глаз с удаленным хрусталиком). У лиц с афакией вероятность повреждения сетчатки резко возрастает. Учитывая большую распространенность хирургических операций по поводу удаления катаракты, сетчатка может быть названа критической структурой при действии ультрафиолетового излучения на глаз.

Повреждающее действие ультрафиолетовых лучей на глаза зависит от ряда факторов :

Длительность пребывания на открытом воздухе.

Географическая широта места нахождения. Наиболее опасна экваториальная зона.

Высота над уровнем моря. Чем выше, тем опаснее.

Время дня. Самое опасное время с 10-11 часов утра до 14-16 часов.

Большие поверхности воды и снега очень сильно отражают солнечные ультрафиолетовые лучи.

Некоторые медикаменты (тетрациклин, диуретики, транквилизаторы и некоторые др.) увеличивают восприимчивость к воздействию ультрафиолетового излучения (за советом обратитесь к врачу).

Облачность не влияет существенно на интенсивность ультрафиолетового излучения, поскольку ультрафиолетовые лучи могут проникать через облака.

Таким образом, постоянное действие ультрафиолетового излучения на глаза оказывает вредное воздействие на поверхность глаза и его внутренние структуры. Более того, негативные эффекты обладают способностью к накоплению: чем дольше глаза подвергаются повреждающему воздействию ультрафиолетового излучения, тем выше риск развития патологий структур глаза и возникновения возрастных заболеваний органа зрения.

Новости

Что такое Ультрафиолетовый свет: УФ-излучение

17.09.2017

1343

Ультрафиолетовый свет

Ультрафиолетовый свет — это тип электромагнитного излучения, который заставляет плакаты с черным светом светиться, отвечает за летний загар и солнечные ожоги. Однако слишком большое воздействие УФ-излучения повреждает живую ткань.

Электромагнитное излучение исходит от солнца и передается волнами или частицами на разных длинах волн и частотах. Этот широкий диапазон длин волн известен как электромагнитный (ЭМ) спектр. Спектр обычно делится на семь областей в порядке уменьшения длины волны и увеличения энергии и частоты. Общими обозначениями являются радиоволны, микроволны, инфракрасные (ИК), видимые, ультрафиолетовые (УФ), рентгеновские и гамма-лучи.

Ультрафиолетовый (УФ) свет попадает в диапазон ЭМ-спектра между видимым светом и рентгеновскими лучами. Он имеет частоты приблизительно от 8 × 1014 до 3 × 1016 циклов в секунду или герц (Гц) и длины волн около 380 нанометров (1,5 × 10-5 дюймов) до примерно 10 нм (4 × 10-7 дюймов). Согласно «Ультрафиолетовому излучению» У.С. ВМФ, УФ обычно делится на три поддиапазона:

  • UVA или вблизи УФ (315-400 нм)
  • UVB или средний УФ (280-315 нм)
  • UVC, или далеко УФ (180-280 нм)

Ультрафиолетовый свет обладает достаточной энергией для разрушения химических связей. Из-за их более высоких энергий УФ-фотоны могут вызывать ионизацию, процесс, в котором электроны отрываются от атомов. Полученная вакансия влияет на химические свойства атомов и заставляет их образовывать или разрушать химические связи, которых они иначе не имели бы. Это может быть полезно для химической обработки, или это может повредить материалы и живые ткани. Этот ущерб может быть полезен, например, на дезинфицирующих поверхностях, но он также может быть вредным, особенно для кожи и глаз, на которые наиболее неблагоприятно воздействуют ультрафиолетовое излучение.


Большая часть естественного света с ультрафиолетовыми лучами встречаются от солнца. Тем не менее, только около 10 процентов солнечного света является ультрафиолетовым излучением, и только около трети этого проникает в атмосферу когда достигает земли. Из солнечного света достигает экватора 95%, а 5% — ультрафиолет. Никакой измеримый УФК от солнечной радиации не достигает поверхности Земли, потому что озон, молекулярный кислород и водяной пар в верхней атмосфере полностью поглощают самые короткие длины волн УФ. Тем не менее, «ультрафиолетовое излучение широкого спектра действия является самым сильным и самым разрушительным для живых существ», согласно 13-му докладу NTP по канцерогенам».


Загар является реакцией на воздействие вредных лучей. По сути, загар обусловлен естественным защитным механизмом организма, который состоит из пигмента, называемого меланином, который продуцируется клетками в коже, называемыми меланоцитами. Меланин поглощает ультрафиолетовый свет и рассеивает его как тепло. Когда организм ощущает солнечный урон, он посылает меланин в окружающие клетки и пытается защитить их от дальнейшего повреждения. Пигмент заставляет кожу темнеть.

«Меланин — естественный солнцезащитный крем» , — сказал в интервью 2013 года помощник профессора дерматологии Медицинской школы Университета Тафтса. Тем не менее, постоянное воздействие ультрафиолетового света может подавить защиту организма. Когда это происходит, происходит токсическая реакция, приводящая к солнечному ожогу. Ультрафиолетовый свет может повредить ДНК в клетках организма. Тело ощущает это разрушение и наводняет область кровью, чтобы помочь в процессе заживления. Болезненное воспаление также происходит. Обычно в течение полудня из-за переизгашения на солнце характерный красно-омарный вид солнечного ожога начинает становиться известным и ощущаться.

Иногда клетки с ДНК, мутированные солнечными лучами, превращаются в проблемные клетки, которые не умирают, а продолжают распространяться как рак. «Ультрафиолетовый свет вызывает случайные повреждения в процессе восстановления ДНК, так что клетки приобретают способность избегать смерти», — сказал Чжуан.

Результатом является рак кожи, наиболее распространенная форма рака. Люди, получающие солнечные ожоги, подвергаются значительно более высокому риску. По словам Фонда рака кожи, риск смертельной формы рака кожи, называемый меланомой, удваивается для тех, кто получил пять или более солнечных ожогов.


Для получения ультрафиолетового света был разработан ряд искусственных источников. По данным Общества физики здоровья, «искусственные источники включают в себя кабины для загара, черные огни, лампы для вулканизации, бактерицидные лампы, ртутные лампы, галогенные лампы, высокоинтенсивные газоразрядные лампы, флуоресцентные и лампы накаливания и некоторые типы лазеров».

Одним из наиболее распространенных способов получения ультрафиолетового света является пропускание электрического тока через испаренную ртуть или какой-либо другой газ. Этот тип лампы обычно используется в кабинах для загара и для дезинфекции поверхностей. Лампы также используются в черных лампах, которые вызывают флуоресцентные краски и красители. Светоизлучающие диоды (светодиоды), лазеры и дуговые лампы также доступны как ультрафиолетовые источники с различными длинами волн для промышленных, медицинских и исследовательских применений.


Многие вещества, включая минералы, растения, грибы и микробы, а также органические и неорганические химикаты, могут поглощать ультрафиолетовый свет. Поглощение заставляет электроны в материале прыгать на более высокий уровень энергии. Эти электроны могут затем вернуться к более низкому энергетическому уровню в серии меньших шагов, испуская часть своей поглощенной энергии в виде видимого света — флуоресценции. Материалы, используемые в качестве пигментов в краске или красителе, которые проявляют такую ​​флуоресценцию, становятся ярче под солнечным светом, потому что поглощают невидимый ультрафиолетовый свет и повторно излучают его на видимых длинах волнах. По этой причине они обычно используются для знаков, спасательных жилетов и других применений, в которых важна высокая видимость.

Флуоресценцию можно также использовать для обнаружения и идентификации определенных минералов и органических материалов. Флуоресцентные зонды позволяют исследователям обнаруживать конкретные компоненты сложных биомолекулярных сборок, таких как живые клетки, с изящной чувствительностью и селективностью.

В люминесцентных лампах, используемых для освещения, ультрафиолетовый свет с длиной волны 254 нм получается вместе с синим светом, который испускается при прохождении электрического тока через пары ртути. Это ультрафиолетовое излучение невидимо, но содержит больше энергии, чем излучаемый видимый свет. Энергия ультрафиолетового света поглощается флуоресцентным покрытием внутри флуоресцентной лампы и излучается как видимый свет. Подобные трубки без того же флуоресцентного покрытия излучают ультрафиолетовый свет, который можно использовать для дезинфекции поверхностей, поскольку ионизирующее воздействие УФ-излучения может убить большинство бактерий.


Помимо солнца, есть многочисленные небесные источники ультрафиолетового света. По словам НАСА, в космосе очень крупные молодые звезды сияют большей частью своего света на ультрафиолетовых волнах. Поскольку атмосфера Земли блокирует большую часть ультрафиолетового света, особенно на более коротких длинах волн, наблюдения проводятся с использованием высотных воздушных шаров и орбитальных телескопов, оснащенных специализированными датчиками изображения и фильтрами для наблюдения в УФ-области спектра ЭМ.

По словам Роберта Паттерсона, профессора астрономии в Университете штата Миссури, большинство наблюдений проводятся с использованием устройств с зарядовой связью (CCD), детекторов, предназначенных для чувствительности к коротковолновым фотонам. Эти наблюдения могут определять температуры поверхности самых горячих звезд и выявлять наличие промежуточных газовых облаков между Землей и квазарами.

Лечение рака ультрафиолетовым светом


В то время как воздействие ультрафиолетового света может привести к раку кожи, некоторые состояния кожи можно лечить с помощью ультрафиолетового света. В процедуре, называемой обработкой ультрафиолетовым излучением псоралина (PUVA), пациенты принимают лекарство или наносят лосьон, чтобы сделать кожу чувствительной к свету. Затем на кожу светится ультрафиолетовый свет. PUVA используется для лечения лимфомы, экземы, псориаза и витилиго.

Это может показаться нелогичным для лечения рака кожи тем же, что и вызвало его, но PUVA может быть полезным из-за воздействия ультрафиолетового света на продукцию клеток кожи. Это замедляет рост, который играет важную роль в развитии болезни.

Ключ к происхождению жизни?


Недавние исследования показывают, что ультрафиолетовый свет, возможно, сыграл ключевую роль в происхождении жизни на Земле, особенно в происхождении РНК. В статье 2017 года в журнале Astrophysics Journal авторы исследования отмечают, что звезды красного карлика не могут излучать достаточный ультрафиолетовый свет чтобы начать биологические процессы, необходимые для образования рибонуклеиновой кислоты необходимой для всех форм жизни на Земле. Исследование также предполагает, что этот вывод может помочь в поиске жизни в других частях Вселенной.

Cтраница 1


Видимый и ультрафиолетовый свет пропускается различными образцами зеркального и оптического стекла до длин волн 3200 - 3500 А, более короткие волны стекло не пропускает. Плавленый кварц пропускает волны длиной 2000 А, однако серьезным недостатком его является малая механическая прочность.  

Поглощение видимого и ультрафиолетового света соответствует квантам энергии от 30 до 300 ккал / моль.  

Для видимого и ультрафиолетового света хорошие результаты дают прозрачные металлические слои платины, родия , сурьмы (4000 до 2000 А) , отложенные испарением на кварцевые пластинки.  

Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е hv, где h - постоянная Планка, равная 6 6262 - 10 34 Дж - с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна hv, где v - частота электромагнитной волны. Зависимость поглощения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствующая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий.  

Исследования поглощения видимого и ультрафиолетового света уже давно используются для получения информации о равновесии в растворе. Однако, так как оптическая плотность раствора зависит от специфического фактора интенсивности (коэффициента экстинкции), а также от концентрации каждой поглощающей формы, интерпретация измерений часто усложняется, если присутствует несколько комплексов. Метод непрерывных изменений (метод Жоба) и другие ненадежные методы, которые все еще часто применяются для вычисления констант устойчивости из спектрофотометрических данных, критически разобраны в разд. Настоящая глава рассматривает главным образом более точные методы обработки измерений поглощения в видимой и ультрафиолетовой частях спектра. В этой главе также рассматривается использование позднее разработанных областей спектроскопии и близко с ними связанных поляриметрических и магнитооптических методов для изучения равновесия в растворе.  

Описана теломеризация под влиянием видимого и ультрафиолетового света, радиоактивного излучения и радиоактивных частиц, протекающая по радикальному механизму.  


Окошко следует защищать от видимого и ультрафиолетового света.  

Алюминийорганические соединения обычно не поглощают видимый и ультрафиолетовый свет. Несомненно, однако, что поглощение может быть вызвано введением некоторых заместителей, например арильных групп. Как уже указывалось выше, донорноакцепторные комплексы с алифатическими и циклическими альдиминами (например, с бензальанилином, пиридином и бензопиридинами) в большей или меньшей степени окрашены. Эта окраска может быть использована для различных количественных определений.  

Как установлено , облучение видимым и ультрафиолетовым светом полимеров, предварительно облученных 1У излУчением, позволят получить дополнительную информацию о природе и свойствах парамагнитных частиц. Оказалось, что парамагнитные образования в полимерах поглощают свет в видимой, и УФ-области.  

Ароматические поликарбонаты очень устойчивы к действию видимого и ультрафиолетового света даже в присутствии воздуха.  

Методами качественной и количественной спектроскопии в видимом и ультрафиолетовом свете широко пользуются для определения некоторых витаминов, гормонов и других биологически активных веществ.  

На основании изучения спектров поглощения в инфракрасном, видимом и ультрафиолетовом свете, а также изучения комбинационного рассеяния света органическую молекулу, как упоминалось выше, нужно представлять не как статическую систему. Атомы в молекулах не неподвижны, а совершают колебания, приближающиеся к гармоническим. Степень отклонения колебаний атомов от колебаний типа гармонического - так называемая антигармоничность - определяет способность, молекулы к распаду на составные части.  

На рис. 16 изображен спектрофотометр СФ-4 для видимого и ультрафиолетового света.  

Крониг показал , что в области видимого и ультрафиолетового света эти представления ведут к следствиям в отношении дисперсии и абсорбции, качественно совпадающим с результатами опыта.  

Статьи по теме: