Температурная шкала фаренгейта, цельсия, кельвина. История изобретения термометра и виды температур

Температурные шкалы

Первым устройством, созданным для измерения температуры, считают водяной термометр Галилея (1597 г.). Термометр Галилея не имел шкалы и был, по существу, лишь индикатором температуры. Полвека спустя, в 1641 г., неизвестным для нас автором был изготовлен термометр со шкалой, имеющей произвольные деления. Спустя еще полвека Ренальдини впервые предложил принять в качестве постоянных точек, характеризующих тепловое равновесие, точки плавления льда и кипения воды. При этом температурной шкалы еще не существовало. Первая температурная шкала была предложена и осуществлена Д.Г. Фаренгейтом (1724 г). Температурные шкалы устанавливались произвольным выбором нулевой и других постоянных точек и произвольным принятием интервала температуры в качестве единицы. Фаренгейт не был ученым. Он занимался изготовлением стеклянных приборов. Ему стало известно, что высота столба ртутного барометра зависит от температуры. Это навело его на мысль создать стеклянный ртутный термометр с градусной шкалой. В основу своей шкалы он положил три точки: 1 - "точка сильнейшего холода (абсолютный нуль)", получаемая при смешениях в определенных пропорциях воды, льда и нашатыря, и принятая им за нулевую отметку (по нашей современной шкале, равная примерно -17,8°С); 2- точка плавления льда, обозначенная им +32°, и 3 - нормальная температура человеческого тела, обозначенная +96° (по нашей шкале +35,6°С). Температура кипения воды первоначально не нормировалась и лишь позднее была установлена +212° (при нормальном атмосферном давлении).

Через несколько лет, в 1731 г. Р.А. Реомюр предложил использовать для стеклянных термометров спирт такой концентрации, который при температуре плавления льда заполнял бы объем в 1000 объемных единиц, а при температуре кипения расширялся бы до 1080 единиц. Соответственно температуру плавления льда Реомюр предложил первоначально обозначить 1000°, а кипения воды 1080 0 (позднее 0° и 80°).

В 1742 г. А. Цельсий, используя ртуть в стеклянных термометрах, обозначил точку плавления льда за 100°, а точку кипения воды за 0°. Такое обозначение оказалось неудобным и спустя 3 года Штремер (или возможно К. Линней) предложил изменить обозначения, принятые вначале Цельсием, на обратные. Был предложен и ряд других шкал. М. В. Ломоносов предложил жидкостный термометр со шкалой 150° в интервале от точки плавления льда до точки кипения воды.

И.Г. Ламберт (1779 г.) предлагал воздушный термометр со шкалой 375°, принимая за 1° одну тысячную часть расширения объема воздуха. Известны также попытки создать термометры на основе расширения твердых тел (П. Мушен-брук, 1725 г.)

Все предлагаемые температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связано с температурой. Но в дальнейшем выяснилось, что термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.

В 1848 г. Кельвин (У. Томсон) предложил построить температурную шкалу на термодинамической основе, приняв за нулевое значение температуру абсолютного нуля и обозначив температуру плавления льда +273,1°. Термодинамическая температурная шкала базируется на втором законе термодинамики. Как известно, работа в цикле Карно пропорциональна разности температур и не зависит от термометрического вещества. Один градус по термодинамической шкале соответствует такому повышению температуры, которое отвечает 1/100 части работы по циклу Карно между точками плавления льда и кипения воды при нормальном атмосферном давлении. Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.

По мере расширения научных наблюдений и развития промышленного производства возникла естественная необходимость установить какую-то единую температурную шкалу. Первая попытка в этом направлении была предпринята в 1877 г., когда Международный комитет мер и весов принял в качестве основной температурной шкалы стоградусную водородную шкалу. За нулевую отметку была принята точка таяния льда, а за 100° - точка кипения воды при нормальном атмосферном давлении 760 мм. рт. ст. Температура определялась по давлению водорода в постоянном объеме. Нулевая отметка соответствовала давлению 1000 мм. рт. ст. Градусы температуры по этой шкале очень близко совпадали с градусами термодинамической шкалы, однако практическое применение водородного термометра ограничивалось из-за небольшого интервала температур примерно от -25 до +100°. В начале XX в. широко применялись шкалы Цельсия (или Фаренгейта - в англо-американских странах) и Реомюра, а в научных работах - также шкалы Кельвина и водородная.

Международная температурная шкала

При резко возросших потребностях в точной оценке температуры пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому после нескольких лет подготовки и предварительных временных решений VIII Генеральная конференция мер и весов приняла в 1933 г. решение о введении Международной температурной шкалы (МТШ). Это решение было в законодательном порядке утверждено большинством развитых стран мира. В СССР Международная температурная шкала была введена с 1 октября 1934 г. (Общесоюзный стандарт ОСТ ВКС 6954).

Международная температурная шкала является практическим осуществлением термодинамической стоградусной температурной шкалы, у которой температура плавления льда и температура кипения воды при нормальном атмосферном давлении соответственно-обозначены через 0° и 100°. МТШ основывается на системе постоянных, точно воспроизводимых температур равновесия (постоянных точек), которым присвоены числовые значения. Для определения промежуточных температур служат интерполяционные приборы, градуированные по этим постоянным точкам. Температуры, измеряемые по международной шкале, обозначаются через СС. В отличие от градусов шкалы Цельсия - базирующейся также на точках плавления льда и кипения воды при нормальном атмосферном давлении и имеющей обозначения 0° и 100°С, но построенной на иной основе (на линейной зависимости между температурой и расширением ртути в стекле), градусы по международной шкале стали называть "градусами международными" или "градусами стоградусной шкалы". Основные постоянные точки МТШ и присвоенные им числовые значения температур при нормальном атмосферном давлении приводятся ниже: (так же см. рис. №1):

а) температура равновесия между жидким и газообразным кислородом (точка кипения кислорода) - 182,96°

б) температура равновесия между льдом и водой, насыщенной воздухом (точка плавления льда) 0.000°

в) температура равновесия между жидкой водой и ее паром (точка кипения воды) 100,000°

г) температура равновесия между жидкой серой и ее паром (точка кипения серы) 414,60°

д) температура равновесия между твердым и жидким серебром (точка затвердевания серебра) 961.93°

е) температура равновесия между твердым и жидким золотом (точка затвердевания золота) 1064,43°

Рис. № 1 Международная температурная шкала

Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В связи с этим представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с

изменением температуры и не зависит от других факторов в широком интервале измерения температур. Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 1 –t 2 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V (формула 14.27) /8/

t=a+bV, (14.27)

где а и b - постоянные коэффициенты.

Подставив в уравнение (14.27) V=V 1 при t=t 1 и V=V 2 при t=t 2 , после преобразований получим уравнение (14.28) температурной шкалы /8/

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32, 0 и 0 °, а точке кипения воды t 2 - 212, 80 и 100 °. Основной интервал t 2 –t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта - t °F , градусом Реомюра – t °R и градусом Цельсия-t °С. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток - масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение (14.29)

t °С= 1,25 °R =-(5/9)( - 32), (14.29)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, определяется только температурами нагревателя Т Н и холодильника Т X и не зависит от свойств рабочего вещества, таким образом коэффициент полезного действия вычисляют по формуле (14.30) /8/

(14.30)

где Q Н и Q X - соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство (14.31) /8/

T Н /Т X = Q Н /Q X , (14.31)

Следовательно, используя один объект в качестве нагревателя, а другой - в качестве холодильника и проводя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего (термометрического) вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура (а не только отношение) имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т КВ и таяния льда Т ТЛ , равной 100 °. Принятие такого значения разности преследовало цель сохранения преемственности числового выражения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Таким образом, обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q КВ и Q ТЛ и приняв Т КВ – Т ТЛ ==100, используя (14.31), получим равенство (14.32) и (14.33)

(14.32)

(14.33)

Для любой температуры Т нагревателя при неизменном значении температуры Т ТЛ холодильника и количества теплоты Q ТЛ , отдаваемой ему рабочим веществом машины Карно, будем иметь равенство (14.34) /8/

(14.34)

Выражение (14.34) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q , полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термометрического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратимому циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково). Из выражения (14.30) следует, что при максимальном значении должна быть равна нулю Т X . Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают Т К. Если в выражение, описывающее газовый закон Гей-Люссака: (где Ро - давление при t=0 °С ; -температурный коэффициент давления), подставить значение темпе­ратуры, равное - , то давление газа P t станет равным нулю. Естественно предположить, что температура , при которой обеспечивается предельное минимальное давление газа, сама является минимально возможной, и по абсолютной шкале Кельвина принята за нуль. Следовательно, абсолютная температура .



Из закона Бойля-Мариотта известно, что для газов температурный коэффициент давления а равен температурному коэффициенту объемного расширения . Экспериментально было найдено, что для всех газов при давлениях, стремящихся к нулю, в интервале температур 0-100 °С температурный коэффициент объемного расширения = 1/273,15.

Таким образом, нулевое значение абсолютной температуры соответствует °С. Температура таяния льда по абсолютной шкале составит ==273,15 К. Любая температура в абсолютной шкале Кельвина может быть определена как (где t температура в °С). Необходимо отметить, что один градус Кельвина (1 К) соответствует одному градусу Цельсия (1 °С), так как обе шкалы базируются на одинаковых реперных точках. Термодинамическая шкала температур, основанная на двух реперных точках (температура таяния льда и кипения воды), обладала недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, так как они зависят от изменения давления, а также от незначительных примесей в воде. Кельвин и независимо от него Д. И. Менделеев высказали соображения о целесообразности построения термодинамической шкалы температур по одной реперной точке. Консультативный комитет по термометрии Международного комитета мер и весов в 1954 г. принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки - wтройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешностью не более 0,0001 К. Температура этой точки принята равной 273,16 К, т.е. выше температуры точки таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который экспериментально не реализуется, но имеет строго фиксированное положение. В 1967 г. XIII Генеральная конференция по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин-1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть также выражена в градусах Цельсия: t = Т- 273,15 К. Использование второго закона термодинамики, предложенное Кельвином с целью установления понятия температуры и построения абсолютной термодинамической температурной шкалы, не зависящей от свойств термометрического вещества, имеет огромное теоретическое и принципиальное значение. Однако реализация указанной шкалы с использованием в качестве термометра тепловой машины, работающей по обратимому циклу Карно, практически неосуществима.

Термодинамическая температура эквивалентна газотермической, используемой в уравнениях, описывающих законы идеальных газов. Газотермическую температурную шкалу строят на основе газового термометра, в котором в качестве термометрического вещества используется газ, приближающийся по свойствам к идеальному газу. Таким образом, газовый термометр является реальным средством для воспроизведения термодинамической температурной шкалы. Газовые термометры бывают трех типов: постоянного объема, постоянного давления и постоянной температуры. Обычно применяют газовый термометр постоянного объема (рисунок 14.127), в котором изменение температуры газа пропорционально изменению давления. Газовый термометр состоит из баллона 1 и соединительной трубки 2, заполненных через вентиль 3 водородом, гелием или азотом (для высоких температур). Соединительная трубка 2 подсоединена к трубке 4 двухтрубного манометра, у которого трубку 5 можно перемещать вверх или вниз благодаря гибкому соединительному шлангу 6. При изменении температуры объем системы, заполненной газом, изменяется, и для приведения его к первоначальному значению трубку 5 вертикально перемещают до тех пор, пока уровень ртути в трубке 4 не совпадет с осью Х-Х. При этом столб ртути в трубке 5, отсчитанный от уровня Х-Х, будет соответствовать давлению газа Р в баллоне.

Рисунок 14.127 – Схема газового термометра

Обычно измеряемую температуру Т определяют относительно некоторой точки отсчета, например по отношению к температуре тройной точки воды T 0 , при которой давление газа в баллоне будет Ро . Искомая температура вычисляется по формуле (14.35)

(14.35)

Газовые термометры используют в интервале ~ 2- 1300 К. Погрешность газовых термометров находится в пределах 3-10- 3 - 2-10- 2 К в зависимости от измеряемой температуры. Достижение такой высокой точности измерения -сложная задача, требующая учета многочисленных факторов: отклонения свойств реального газа от идеального, наличие примесей в газе, сорбцию и десорбцию газа стенками баллона, диффузию газа через стенки, изменение объема баллона от температуры, распределение температуры вдоль соединительной трубки.

В силу большой трудоемкости работы с газовыми термометрами предпринимались попытки изыскать более простые методы воспроизведения термодинамической температурной шкалы.

На основе проведенных в различных странах исследований на VII Генеральной конференции по мерам и весам в 1927 г. было принято термодинамическую шкалу заменить «практической» температурной шкалой и назвать ее международной температурной шкалой. Эта шкала была согласована со стоградусной термодинамической шкалой настолько тесно, насколько позволял уровень знаний того времени.

Для построения международной температурной шкалы было выбрано шесть воспроизводимых реперных точек, значения температуры которых по термодинамической шкале были тщательно измерены в различных странах с помощью газовых термометров и приняты наиболее достоверные результаты. С помощью реперных точек градуируются эталонные приборы для воспроизведения международной температурной шкалы. В интервалах между реперными точками значения температур рассчитывают по предлагаемым интерполяционным формулам, устанавливающим связь между показаниями эталонных приборов и температурой по международной шкале. В 1948, 1960 и 1968 гг. в положения о международной температурной шкале был внесен ряд уточнений и дополнений, так как на основе усовершенствованных методов измерений были обнаружены отличия этой шкалы от термодинамической, особенно в области высоких температур, а также в связи с необходимостью продлить температурную шкалу до более низких температур. В настоящее время действует принятая на XIII конференции по мерам и весам усовершенствованная шкала под названием «международная практическая температурная шкала 1968» (МПТП-68). Определение «практическая» указывает, что эта температурная шкала в общем не совпадает с термодинамической. Температуры МПТШ-68 снабжаются индексом (T 68 или t 68 ).

МПТШ-68 базируется на 11 основных реперных точках, приведенных в таблице 9. Наряду с основными имеется 27 вторичных реперных точек, охватывающих диапазон температур от 13,956 до 3660 К (от - 259,194 до 3387 °С). Числовые значения температур, приведенные в таблице 14.4, соответствуют термодинамической шкале и определены с помощью газовых термометров.

В качестве эталонного термометра в интервале температур от 13,81 до 903,89 К (630,74 °С - точка затвердевания сурьмы-вторичная реперная точка) принимается платиновый термопреобразователь сопротивления. Этот интервал разбит на пять подынтервалов, для каждого из которых определены интерполяционные формулы в виде полиномов до четвертой степени. В интервале температур от 903,89 до 1337,58 К используется эталонный платина-платинородиевый термоэлектрический термометр. Интерполяционной формулой, связывающей термоэлектродвижущую силу с температурой, здесь является полином второй степени.

Для температур выше 1337,58 К (1064,43°С) МПТШ-68 воспроизводится с помощью квазимонохроматического термометра с использованием закона излучения Планка.

Таблица 14.4 - Основные реперные точки МПТШ-68

Температура и температурные шкалы

Температура - степень нагретости вещества. Данное понятие основано на способности передавай тепло различными телами (веществом) друг другу при разной степени их нагретости и находиться в состоянии теплового равновесия при равных температурах. Причем тепло всегда передается от тела с более высокой температурой к телу с низкой температурой. Температура может быть также определена как параметр теплового состояния вещества, обуславливаемый средней кинетической энергией движения его молекул. Отсюда очевидно, что понятие «температура» для одной молекулы неприменимо, т.к. при какой-либо конкретной температуре энергия одной молекулы не может быть охарактеризована средним значением. Из данного положения следует, что понятие «температура» является статистическим.

Температура измеряется приборами, которые называются термометрами, в основу работы которых могут быть заложены различные физические принципы. Возможность измерения температуры такими приборами основывается на явлении теплового обмена телами с разной степенью нагретости и изменении их физических (термометрических) свойств при нагревании (охлаждении).

Для количественного определения температуры необходимо выбрать ту или иную температурную шкалу. Температурные шкалы строятся на основе определенных физических свойств какого-либо вещества, которые не должны зависеть от посторонних факторов и должны быть точно и удобно замеряемыми. На самом деле не существует ни одного термометрического свойства для термометрических тел или веществ, которые бы полностью удовлетворяли указанным условиям во всем диапазоне измеряемых температур. Поэтому температурные шкалы определяются для различных температурных диапазонов, построенных на произвольном допущении линейной зависимости

между свойством термометрического тела и температурой. Такие шкалы называются условными, а измеряемая по ним температура -условной.

4 К условной температурной шкале относится одна из распространенных шкал - шкала Цельсия. По этой шкале в качестве границ условного диапазона измерения приняты точки плавления льда и кипения воды при нормальном атмосферном давлении, а одну сотую часть данной шкалы принято называть одним градусом Цельсия (\ С),

| Однако, построение такой температурной шкалы с не пользованием жидкостных термометров может привести к ряду затруднений, связанных со свойствами используемых термометрических жидкостей. Например, показания ртутного и спиртового термометров, работающих на принципе расширения жидкости, будут различными при измерении одной и той же температуры в силу различных коэффициентов их объемного расширения.

| Поэтому для усовершенствования условной температурной шкалы было предложено использование газового термометра с использованием газов, свойства которых незначительно отличались бы от свойств идеального газа (водород, гелий, азот и др.).

С помощью газового термометра измерение температуры может быть основано на изменении объема или давления газа в замкнутой термосистеме.

На практике более широкое распространение получил способ, основанный на измерении давления при постоянном объеме, т.к. является более точным и легко реализуемым.

Для создания единой температурной шкалы, не связанной с термометрическими свойствами различных веществ для широкого интервала температур, Кельвином была предложена шкала температур, основанная на втором законе термодинамики. Эта шкала получила название термодинамической температурной шкалы.

В ее основе лежат следующие положения:

Если при обратимом цикле Карно тело поглощает теплоту 0, при температуре Т, и отдает тепло С? 3 при температуре Т 2 , то должно соблюдаться следующее равенство:

Т. О,

п<Г (21)

Согласно положениям термодинамики данное соотношение не зависит от свойств рабочего тела.

I Термодинамическая температурная шкала Кельвина стала использоваться как исходная шкала для других температурных шкал, не зависящих от термометрических свойств рабочего вещества. Для определения одного градуса по этой шкале интервал, находящийся между точками плавления льда и кипения воды, делится, как и в стоградусной шкале Цельсия, на сто равных частей. Таким образом, I П С оказывается равным ] °К

* По данной шкале, принятой называться абсолютной за нулевую точку принимается температура на 273,15° ниже точки плавления льда, называемая абсолютным нулем. Теоретически доказано, что при этой температуре прекращается всякое тепловое движение молекул любого вещества, поэтому эта шкала в известной мере носит теоретический характер.

Между температурой Т, выраженной в Кельвинах, и температурой *, выраженной в градусах Цельсия, действует соотношение:

1=Т-Т 0 , (2.2)

где Т 0 = 273,15 К.

Из существующих термометров наиболее точно реализуют абсолютную температурную шкалу газовые термометры в интервале не выше 1200 °С. Использование этих термометров при более высоких температурах сталкивается с большими трудностями, кроме того, газовые термометры являются достаточно сложными и громоздкими приборами, что для практических целей неудобно. Поэтому для практического и удобного воспроизведения термодинамической шкалы в широких диапазонах изменения температурпринятыииспользуютсяМеждународные практические

температурные шкапы (МПТШ). В настоящее время действует принятая в 1968 году температурная шкала МПТШ-68, построение которой базируется на реперных точках, определяемых фазовым состоянием веществ. Данные реперные точки используются для эталонизации температур в различных диапазонах, которые приведены в табл. 2.1.

История изобретения термометра благодаря переводам наследия древних ученых сохранилась хорошо.

Так описано, что греческий ученый и врач Гален, сделал первую попытку измерения температуры в 170 году н.э. Он документально описал стандартную температуру кипящей воды и льда.

Измерители нагретости

Концепция измерения температуры является достаточно новой. Термоскоп — по существу, измеритель нагретости без шкалы был предшественником современного термометра. Были несколько изобретателей, работающих на термоскопе в 1593 году, но наиболее известным является Галилео Галилей, итальянский изобретатель, который также улучшил (но не изобрел) термоскоп.

Термоскоп может показать различия в нагретости, что позволяет наблюдателям знать, если что-то становилось теплее или холоднее. Тем не менее, термоскоп не может обеспечить точную температуру в градусах. В 1612 году итальянский изобретатель Санторио добавил свою числовую шкалу на термоскоп и она была использована, чтобы измерять температуру человека. Но по-прежнему не хватало стандартизированной шкалы и точности.

Изобретение термометра принадлежит немецкому физику Габриелю Фаренгейту который совместно с датским астрономом Олаф Кристенсен Рёмером разработал измеритель на основе и с использованием спирта.

В 1724 году они ввели шкалу стандартной температуры, которая носит его имя Фаренгейта, масштаба который был использован для записи изменений нагретости в точной форме. Его шкала разделена на 180 градусов между точками замерзания и кипения воды. 32° F замерзания воды и 212 ° F кипения воды, 0° F была основана на нагретости равной смеси воды, льда и соли. Также за основу этой знаковой системы взята температура человеческого тела. Первоначально, нормальная нагретость человеческого тело была 100° F, но с тех пор была скорректирована до 98,6 ° F. Равная смесь воды, льда и хлорида аммония использована для установки в 0° F.

Фаренгейт демонстрировал термометр на спиртовой основе в 1709 году до открытия ртутного аналога, который оказался более точным.

В 1714 Фаренгейт разработал первый современный термометр — ртутный термометр с более точными измерениями. Известно, что ртуть расширяется или сжимается при повышении физической величины нагретости или падает. Это можно считать первым современным ртутным термометром со стандартизированной шкалой.

История изобретения термометра отмечает, что Габриель Фаренгейт немецкий физик изобрел спиртовой термометр в 1709 году и ртутный термометр в 1714 году.

Виды температурных шкал

В современном мире находят применение определенные виды температурных шкал :

1. Шкала Фаренгейта является одной из трех основных температурных знаковых систем, используемых сегодня с двумя другими Цельсия и Кельвина. Фаренгейт это стандарт, используемый для измерения температуры в Соединенных Штатах, но большая часть остального мира использует Цельсия.

2. Вскоре после открытия Фаренгейта шведский астроном Андерс Цельсий озвучил свою шкалу, которая упоминается как Цельсия. Она делится на 100 градусов, отделяющих точку кипения и замерзания. Оригинальный масштаб установленный Цельсием 0 в качестве точки кипения воды и 100 в качестве точки замерзания, был изменен вскоре после изобретения шкалы и стал: 0° C – замерзания, 100° C – точка кипения.

Термин Цельсия был принят в 1948 году международной конференцией по вопросам мер и весов и масштаб является предпочтительным как датчик температуры для научных приложений, а также в большинстве стран мира кроме Соединенных Штатов.

3. Следующую шкалу изобрел Лорд Кельвин из Шотландии с его датчиком в 1848 году, известная сейчас как шкала Кельвина. Она основывался на идее абсолютной теоретической нагретости, при которой все вещества не имеют тепловой энергии. Там нет отрицательных чисел по шкале Кельвина, 0 K самая низкая температура возможная в природе.

Абсолютный ноль по Кельвину означает минус 273,15 ° С и минус 459,67 F. Шкала Кельвина широко используется в научных приложениях. Единицы по шкале Кельвина имеют тот же размер, как и у шкалы Цельсия, за исключением того, что шкала Кельвина устанавливает самую .

Коэффициенты пересчета видов температур

Фаренгейта в градусы Цельсия: вычтите 32, а затем умножить на 5, а затем разделить на 9;

Цельсия в градусы Фаренгейта: умножьте на 9, делим на 5, затем добавить 32;

Фаренгейта в Кельвина: вычтите 32, умножить на 5, разделить на 9, а затем добавить 273,15;

Кельвина в градусы Фаренгейта: вычтите 273,15, умножить на 1,8, а затем добавить 32;

Кельвина в градусы Цельсия: добавить 273;

Цельсия в Кельвина: вычтите 273.

Термометры используют материалы, которые изменяются в некотором роде, когда они нагреваются или охлаждаются. Самыми распространенные ртутные или спиртовые, где жидкость расширяется, когда нагревается и сжимается при охлаждении, поэтому длина столба жидкости длиннее или короче в зависимости от нагретости. Современные термометры калиброванные по виду температур как по Фаренгейту (используются в США), по Цельсию (во всем мире) и Кельвина (используется в основном учеными).

Температура - важнейший параметр окружающей среды (ОС). Температура ОС характеризует степень нагретости, которая определяется внутренней кинетической энергией теплового движения молекул. Температуру можно определить как параметр теплового состояния. Для сравнения степени нагретости тел использует изменение какого либо физического их свойства, зависящего от температуры и легко поддающегося измерению (например, объемное расширение жидкости, изменение электрического сопротивления металла и т.д.).

Чтобы перейти к количественному определению температуры, необходимо установить шкалу температур., т.е. выбрать начало отсчета (нуль температурной шкалы) и единицу измерения температурного интервала (градус).

Температурные шкалы, применяемые до введения единой температурной шкалы, представляет собой ряд отметок внутри температурного интервала, ограниченного двумя легко воспроизводимыми постоянными (основными реперными или опорными) точками кипения и плавления химически чистых веществ. Эти температуры принимали равными произвольным числовым значениям t" и t”. Таким образом, 1 град = (t" - t”)/n, где t" и t” - две постоянные легко воспроизводимые температуры; n - целое число, на которое разбит температурный интервал.

Для разметки температурной шкалы чаще всего использовали объемное расширение тел при нагревании, а за постоянные точки принимали температуры кипения воды и таяния льда. На этом принципе основаны температурные шкалы, созданные Ломоносовым, Фаренгейтом, Реомюром и Цельсием. При построении этих шкал была принята линейная зависимость между объемным расширением жидкости и температурой, т.е.

где k - коэффициент пропорциональности (соответствует относительно температурному коэффициенту объемного расширения). Интегрирование уравнения (1) дает

где D - постоянная интегрирования.

Для определения постоянных k и D используют две выбранные температуры t" и t”. Приняв при температуре t" объем V", а при температуре t” - V”, получим

t" = kV" + D; (3)

t” = kV” + D; (4).

Вычтя уравнение (3) из уравнений (2) и (4), получим

t - t" = k(V - V") (5);

t” - t" = k(V” - V") (6).

Разделив уравнение (5) на уравнение (6), получим

где t" и t” - температура соответственно таяния льда и кипения воды при нормальном давлении и ускорении свободного падения 980,665 см/с 2 ; V" и V” - объемы жидкостей, соответствующие температурам t" и t”; V - объем жидкости, соответствующий температуре t.

В природе нет жидкостей с линейной зависимостью между коэффициентом объемного расширения и температурой поэтому показания термометров зависят от природы термометрического вещества (ртути, спирта и т.п.).

С развитием науки и техники возникла необходимость в создании единой температурной шкалы, несвязанной с какими либо частными свойствами термометрического вещества и пригодные в широком интервале температур. В 1848 году Кельвин, исходя из второго начала термодинамики, предложил определять температуру на основании равенства

T 2 /(T 2 - T 1) = Q 2 /(Q 2 - Q 1),

где Т 1 и Т 2 - температура соответственно холодильника и нагревателя; Q 1 и Q 2 - количество теплоты, соответственно полученной рабочим веществом от нагревателя и отданной холодильнику (для идеальной тепловой машины, работающей по циклу Карно).

Пусть Т 2 равно температуре кипения воды (Т 100), а Т 1 - температура таяния льда (Т 0); тогда, приняв разность T 2 - T 1 равной 100 град и обозначив количество теплоты, соответствующее этим температурам, через Q 100 и Q 0 , получим

Т 100 = Q 100 100/(Q 100 - Q 0); Т 0 = Q 0 100/(Q 100 - Q 0).

При любой температуре нагревателя

Т = Q 100/(Q 100 - Q 0) (8).

Уравнение является уравнением термодинамической шкалы температур, которое не зависит от свойств термометрического вещества.

Решением XI Генеральной конференции по мерам и весам в России предусмотрено применение двух температурных шкал: термодинамической и международной практической.

В термодинамической шкале Кельвина нижней точкой является точка абсолютного нуля (0К), а единственной экспериментальной основной точкой - тройная точка воды. Этой точке соответствует 273,16К. Тройная точка воды (температура равновесия воды в твердой, жидкой и газообразной фазах) ваше точки таяния льда на 0,01 град. Термодинамическую шкалу называют абсолютной, если в ней за нуль принята точка на 273,16К ниже точки плавления льда.

Строго говоря, осуществить шкалу Кельвина невозможно, т.к. уравнение ее выведено из идеального цикла Карно. Термодинамическая шкала температур совпадает со шкалой газового термометра, наполненного идеальным газом. Известно, что некоторые реальные газы (водород, гелий, неон, азот) в широком интервале температур по своим свойствам сравнительно мало отличаются от идеального газа. Так, шкала водородного термометра (с учетом поправок на отклонение свойств реального газа от идеального) представляет собой практически термодинамическую шкалу температур.

Международная практическая температурная шкала основана на ряде воспроизводимых равновесных состояний, которым соответствуют определенные значения температур (основные реперные точки), и на эталонных приборах, градуированных при этих температурах. В интервале между температурами основных реперных точек интерполяцию выполняют по формулам, устанавливающим связь между показаниями эталонных приборов и значениями международной практической шкалы. Основные реперные точки реализуются как определенные состояния фазовых равновесий некоторых чистых веществ и охватывают интервал температур от -259,34 0 С (тройная тоска равновесия водорода) до +1064,43 0 С (точка затвердевания золота).

Эталонным прибором, используемым в области температур от -259,34 до +630,74 0 С, является платиновый термометр сопротивления, от +630,74 до +1064,43 0 С - термоэлектрический термометр с термоэлектродами и платинародия (10% родия) и платины. Для области температур выше 1064,43 0 С температуру по международной практической шкале определяют в соответствии с законом излучения Планка.

Температуру, измеряемую по международной практической шкале, обозначают t, а числовые значения сопровождают знаком 0 С.

Температура по термодинамической шкале связана с температурой по международной практической шкале соотношением T = t + 273,15. На IX генеральной конференции по мерам и весам в 1948 году международная практическая температурная шкала была названа шкалой Цельсия. Для международной практической шкалы температур и шкалы Цельсия общей является одна постоянная точка (температура кипения воды); во всех остальных точках эти шкалы существенно различаются, особенно при высоких температурах.

Статьи по теме: